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I. INTRODUCTION

Magnetic resonance imaging (MRI) is a medical
imaging technique used in radiology to form
pictures of the anatomy and the physiological
processes of the body. An MRI scan is used to
investigate or diagnose conditions that affect soft
tissue.

Multiple  Sclerosis (MS) is a complex
inflammatory and degenerative disease of the
central nervous system. MS causes demyelinating
lesions that can be identified using MRI scans. 3T
machines are normally used in a hospital setting
to perform these MRI scans. They are expensive
and not portable, limiting their reach to remote
areas and to places like the emergency room or
the intensice care unit. Recent advances in MRI
technologies have resulted in the development of
portable low-power MRI machines. Hyperfine, Inc
is one such company that has developed a portable
low-power 64mT 65 W MRI machine. Such
portable MRI machines provide the advantage of
being usable in non-conventional areas without the
need of a shielded environment. Fluid-attenuated
inversion recovery (FLAIR) images are more
sensitive in lesion detection as compared to T2-
weighted MRI images [2].

In this study, we will develop an algorithm
to detect MS lesions in FLAIR MRI scans of a
portable low-power (64mT) MRI machine and find
the accuracy of detected lesions with respect to
a manually annotated scan. A similar comparison
will then be made using the same algorithm on the
paired scans from a 3T machine. In the end, we
will present results from the 3T and 64mT scans
and discuss future paths to improve detection.

The data set for our project includes the 3T and
64mT MRI scans of five different subjects. We
have selected 5 slices from he axial place to detect
lesions. All subjects are known to have lesions in

Jal Mahendra Panchal Parimal Mehta

their scans. However, the extent of lesions in each
subject’s scans differs and hence this data set allows
us to test our algorithm against scans that exhibit
different level of MS stages. This in turn will help
us in creating a more robust algorithm that can
potentially work for many different data sets of
varying sizes and difficulties.

II. METHODS

We have obtained paired 3T and 64mT FLAIR
scans from 5 subjects having MS lesions. The scans
were performed on the same day at the Hospital of
University of Pennsylvania. Of all the slices in the
scans, we selected 5 slices from the axial view to
detect the lesions. Slices were selected where the
lesions were most clearly visible.

The overall methodology involves pre-processing
the scans to make sure we have equivalent 3T
and 64mT scans (registration), and to remove the
skull (brain extraction). We then use unsupervised
learning on the pre-processed scans to get intensity
clustering parameters that are then fed to more
Flood fill segmenting algorithm that outputs a mask
for the lesions. Once the lesions are segmented, we
compare the segmented lesions with the correspond-
ing manually annotated mask for each slice. We
use the dice coefficient to quantify the accuracy of
lesion detection. The detailed steps are explained as
follows:

Brain Extraction

Brain Extraction is the first step that’s incorpo-
rated in any of the MRI image processing algo-
rithms. This is done to exclude the outer periphery
which generally represents the skull, leaving only
the region that’s occupied by actual brain tissue.
This is an essential step as due to the density of
the bone structure, the skull can often throw image
segmentation algorithms off and decrease the accu-
racy. In our project, we perform brain extraction by
using the open source FSL library’s brain extraction
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Fig. 1: Overview The image shows the steps from raw MRI scans to the calculation of accuracy of lesion

detection.

tool (BET). This tool helps us extract the brain
by deleting the non brain tissue from the scan.
More details about brain extraction can be found
in Appendix L

Registration

This is an important component of pre-processing
as it ensures that the 3T and 64mT images being
compared are equivalent in nature. This is because
all the raw MRI scans are 3D representations that
are put together using multiple scans/slices of the
brain. In case of 3T images, the higher capacity of
these machines ensure a higher resolution and hence
the complete 3D scan includes roughly 256 slices.
On the other hand, in case of the low powered
64mT scans - there are only 36 slices for a subject.
For reference, these ’slices’ can be thought of as
different layers that when put on top of each other
would make a 3D model of a brain.

We perform registration to align the two scans so
that the selected slice in each scan corresponds to
the same brain region.

For this, we use an open-source tool called ITK-
SNAP. ITK-SNAP is a software application used
to segment structures in 3D medical images. It
provides semi-automatic segmentation using active
contour methods, as well as manual delineation,
image navigation, and other supporting utilities. We
used the automatic registration feature to register
the 64mT images with the 3T images using image
centers. After this, we manually adjusted the z
axis(depth) until the 3T and 64mT slices matched

each other in appearance. After this, we have chosen
5 relevant slices from each of our 5 subjects and use
them to detect lesions and make comparisons.

Gaussian Mixture modeling

Gaussian mixture modelling (GMM) is a prob-
abilistic technique that assumes that all the data
points are generated from a mixture of a finite
number of Gaussian distributions with unknown
parameters. One can think of mixture models as
generalizing k-means clustering to incorporate in-
formation about the co-variance structure of the
data as well as the centers of the latent Gaussians.
We have utilized scikit-learn based GMM functions
to build our own code that helps our algorithm to
determine segmenting thresholds in an unsupervised
format.

(a) Brain extracted

Fig. 2: P23 3T MRI Scans

(b) Segmented



As can be seen in the figure above, a brain
extracted MRI scan generally have the following
regions -
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Fig. 3: Analogy of the brain

o Gray matter - Gray matter is the region asso-
ciated with movements and voluntary actions.
This is usually shaped like a butterfly and is
easily distinguishable both in the original MRI
scan as well as the segmented example where
it is coloured white

« White matter - White matter is the brain tissue
that surrounds the gray matter. It is also quite
distinguishable and is coloured gray in the
segmented image

o In case the subject is suffering from MS, the
MS lesions will show up in their MRI scans as
light coloured lobes/ patches around the gray
matter of the brain. In almost all cases, these
patches show up over the white matter and
are easily distinguishable due to their higher
pixel value as compared to the rest of the MRI.
These are shown in the segmented sample
image in a dark gray tone.

Hence, the main reason behind using GMM is to
exploit the different pixel values of certain regions
on the MRI scan to identify them as different
regions. Gaussian mixture models helps us plot the
intensity of these pixel values to give us a single
Gaussian curve which can be broken down to be
made up of multiple Gaussian curves.
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(a) Clustering based on gaussian curves

Fig. 4: Gaussian curves

These smaller Gaussian curves represent a
different region in an image and can be used to
find the ideal threshold values and tolerances to
separate out different regions in order to segment
the lesions.

During our analysis and trials, we noticed the
best results were derived when the threshold was
set up to be the mean + 1 standard deviations.

GMM gives the mean and standard deviation
of each group. When the mean was used as the
threshold and the standard deviation as tolerance to
get the lesion region, it was seen that the output
was not quite accurate.

Through GMM, the group with maximum mean
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Fig. 5: Histogram Analysis of Lesion Segment

intensity was separated out and then the histogram
was plotted. In Figure 5] the rightmost image shows
the segmentation of the image through GMM. The
histogram is plotted for the group where the lesion
regions are present. Through the histogram, it can
be concluded that the mean of the group is actu-
ally lower than what should have been the actual
threshold - this can be reasoned out due to the
probabilistic prediction used by GMM.

Hence, the threshold for the next step is taken as the
mean + one standard deviation and the tolerance is
taken as the standard deviation directly.

Flooding

Flood filling is a technique in which all pixels
with similar intensities can be identified in an im-
age. This also lets an user manipulate the identified
pixels to make it standout in the result. Hence the
flood filling algorithm is really useful and allows
us to segment out just the lesions from the brain
extracted MRI images in form of masks.

This technique is used in combination with the
GMM part of our algorithm. After GMM has been
able to identify the different regions and their
threshold values, the region of interest (lesions) is
chosen. Because we know that the pixel intensity
of the lesions is the highest in an MRI image, it
becomes easy to chose the cluster of interest as the
cluster representing the lesions will naturally have
the highest mean for its Gaussian curve. Once we
find out the cluster of interest, we use its mean
and standard deviation to calculate the threshold



and tolerance that will be then be used to segment
the lesions to create a mask. These values are then
passed on to the flood filling algorithm.

The flood filling algorithm takes two inputs from
the GMM function. The first one of these being a
threshold value and the second one is a tolerance
value. Both these values signify the pixel intensity
value on a scale from O to 255. For this function,
our code finds out all pixels that have an intensity
value that is more than the passed threshold and
stores their coordinates. These coordinates are then
passed onto the flood fill algorithm which is made
to loop over each pixel coordinate where it does a
breadth first search. In this process, the function
loops over all neighboring pixels that lie within
the defined tolerance of the threshold. This is done
in a wildfire way where the algorithm would keep
looking for neighboring neighbors until it cant find
any more pixels that have an intensity within the
defined tolerance of the threshold. Our code sets all
such neighboring pixels to an intensity of 255 and
the rest to 0. This process is repeated for all the
stored coordinates and ends up giving us a mask of
the MRI where only the detected lesions are shown
and every other pixel is turned black.

Fig. 6: Flood filling

These masks are then used to compare against
a known annotated mask that has been manually
created by us to check for accuracy of the detected
lesions.

Annotated Masks and Dice coefficient

Annotated Masks are created manually. Here,
we use the ITK-SNAP open source software to
manually go into each slice of a 3T or a 64mT
MRI scan and color the lesions by hand. The
process of annotation is fairly common when it
comes to testing the robustness of MRI lesion
segmenting algorithms. It generally involves a
qualifies radiologist manually going through all
slices of an MRI and annotating / colouring the
lesions by hand. These coloured lesions are then
converted into black and white masks which then
serve as the ground truth. Hence the annotated
masks are then used to analyze the accuracy of a
segmenting algorithm. In our project, we annotated
the masks ourselves instead of a radiologist and

used these to perform the final analysis. All 3T and
64mT masks that are created using our algorithm
are then compared against the ground truth.

We use dice coefficient to perform the aforemen-
tioned comparisons. A dice coefficient or a dice
score is a value between 0 and 1. It is a widely
accepted tool that is used to quantify the similarity
between a ground truth versus a segmented image.
It is defined as the size of the intersection of
two segments divided by the total size of the two
segmentations. For sake of a better understanding,
imagine if we have A (the ground truth segment)
and B (segment from an algorithm) that are to be
compared. In case of both the masks, the mask is
set to white (or 255) where we have a segment of
interest and black (or 0) everywhere else. So we
have three main categories of interest :-

Fig. 7: Dice coefficient

1) Number of positives : This is the total number
of pixels that have an intensity of 255 in the
mask A

2) Number of true positives : This is the total
number of pixels which have the value 255
in both A and B. So it the intersection of the
regions of ones in A and B. It is the same as
using the AND operator on A and B.

3) Number of false positives : This is the number
of pixels that are detected in mask B (i.e. are
set to 255) but are black in mask A.

Hence the dice coefficient is defined as :
2.|A|N|B|
D= —1——
|AU B|
III. RESULT

ey

To derive a result, we compare each of the
annotated masks to their corresponding 3T or 64mT
masks created by our unsupervised algorithm. The
results are presented in figure [§]

IV. DISCUSSION

Supervised GMMs and CNNs could not be
trained for a smoother image segmentation of the
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Fig. 8: Dice Coefficient Box plot

brain images because of the small dataset. The
dataset was the main challenge that was faced in the
project. For future scope, contrast filters can be used
to pre-process the brain scans and get higher pixel
intensity differences. In addition to dice coefficient,
the analysis could be done using volumetric lesions.
Another approach which could be tried out would
be translating the 2D lesion detection into 3D lesion
detection by processing on voxels instead of pixels.

V. CONCLUSION

For the subjects with larger lesions, the analysis
on detection and analysis show better similarity
indices as opposed to the subjects with smaller
lesions. A combination of one or more techniques
mentioned in Section IV can be used to improve
the segmentation specifically on 64mT images and
to achieve better metrics.
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VII. APPENDIX I: BRAIN EXTRACTION
METHODS

Deepbrain

Brain image processing tools using Deep Learn-
ing focused on speed and accuracy. We initially
used this Python library for brain extraction. How-
ever, it did not perform well for 64mT images and
cut off parts of the brain as well. Also, the library
has not been updated since 2018, so we decided not
to move forward with this library.

(a) 64mT Image Process-
ing

(b) Brain Partly Deleted

Fig. 9: DeepBrain Brain Extraction Issues

FSL BET

This is the brain extraction tool from the FMRIB
Software Library. It is a command line based tool
and worked perfectly out of the box. So, this is what
we moved forward with.

ANTSPyNet

A collection of deep learning architectures and
applications ported to the python language and tools
for basic medical image processing. This library
is being actively worked on, however it is not
compatible with Windows, and has a lot of depen-
dencies which need to be downloaded for MacOS
and Linux, so we stayed with BET.

VIII. APPENDIX II : SEGMENTATION
METHODS

Canny Edge Detection

This was part of an initial thought process where
the intention was to use canny edge detection to
find various bounded areas within the MRI and
use the output to segment lesions out. However, on
doing some further research we discovered better
approaches and hence did not end up using Canny
edge in the final version of the project.

(a) Input

(b) Output

Fig. 10: Canny edge

Active Contour Segmentation

This is a scikit based algorithm that needed the
user to specify a region of interest (in the form of
a circle or a square). The active contour algorithm



then uses a ’snake’ approach to search for contours.
In addition to specifying a region of interest, the
user also needs to tune 3 different parameters that
vary between different images of the same subject.
We found this difficult to tune manually in order
to get the right segmentation and found the overall
approach finicky.

Fig. 11: Active contour segmentation

Otsu thresholding

This is an exhaustively searches for the threshold
that minimizes the intra-class variance, defined as
a weighted sum of variances of the two classes.
Its implementation varies depending on the kind
of thresholding procedures that are coded in addi-
tion to the algorithm. Out of all the thresholding
techniques applied, we got relatively better result
for Local thresholding. This technique although
promising was not used as we found flood filling
to be much more accurate and easier to train in an
unsupervised format.

Fig. 12: Local thresholding on Otsu

Slic

SLIC is an unsupervised scikit based algorithm
that segments image using k-means clustering in
Color-(x,y,z) space. We were able to roughly seg-
ment the areas containing the legions but this al-
gorithm required a lot of additional post processing
that the other algorithms did not require.
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Fig. 13: SLIC

K-means clustering

K-means is an unsupervised algorithm used to
identify the different segments of the interest area. It
clusters, or partitions the given data into K-clusters
or parts based on the K-centroids. In this project, the
goal was to find certain groups based on the pixel
intensities in the unlabelled data and then assign
each pixel a group number. The total number of
groups would be K.

Fig. 14: K-Means Clustering
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